[ID:6-5814016] 2019高考人教物理选择题金选题及答案(6份打包)
当前位置: 物理/高中物理/高考专区/二轮专题
资料简介:
2019高考人教物理选择题金选题(1)及答案 1、如图所示,装载石块的自卸卡车静止在水平地面上,车厢倾斜至一定角度时,石块会沿车厢滑至车尾.若车厢倾斜至最大角度时还有部分石块未下滑,卡车会向前加速,从而把残余石块卸下.若视最大静摩擦力等于滑动摩擦力,则(  ) 图 A.增加车厢倾斜程度,石块受到的支持力增加 B.增加车厢倾斜程度,石块受到的摩擦力一定减小 C.卡车向前加速时,石块所受最大静摩擦力会减小 D.石块向下滑动过程中,对车的压力大于车对石块的支持力 答案 C 解析 根据受力分析可知,石块受到的支持力FN=mgcosθ;故随着车厢倾斜度增加,石块受到的支持力减小;故A错误;石块未下滑时,摩擦力等于重力的分力,故Ff=mgsinθ,θ增大,故摩擦力增大,故B错误;卡车向前加速运动时,合力沿运动方向,此时压力减小,故最大静摩擦力减小,故C正确;石块向下滑动过程中,对车的压力与车对石块的支持力为作用力和反作用力,故大小相等,故D错误. 2、下列比赛项目中,运动员可被看作质点的是(  )                     答案D 解析自由体操要根据运动员的动作进行打分,柔道要看运动员着地时的身体部位,拳击要看身体的着拳部位,这三种运动的运动员都不能被看作质点,A、B、C项错误;马拉松比赛中运动员可以被看作质点,因为运动员的身高和动作相对于路程来讲可以忽略,D正确。 3、如图所示,质量为M的斜面体A放在粗糙水平面上,用轻绳拴住质量为m的小球B置于斜面上,整个系统处于静止状态,已知斜面倾角及轻绳与竖直方向夹角均为θ=30°。不计小球与斜面间的摩擦,则(  ) A.轻绳对小球的作用力大小为mg B.斜面对小球的作用力大小为mg C.斜面体与水平面间的摩擦力大小为mg D.斜面体对水平面的压力大小为(M+m)g 答案C 解析由题目叙述得到模型图,以B球为研究对象,分析受力情况,如图所示: 根据平衡条件,水平方向:FTsin θ=FN1sin θ 得FT=FN1 则竖直方向:2FTcos θ=mg 解得轻绳对小球的作用力大小为FT=mg 斜面对小球的作用力大小为FN1=FT=mg。 故A、B错误。 以B球和斜面整体为研究对象,分析受力情况,如图所示,则有: FN2+FTcos θ=Mg+mg 得FN2=Mg-mg 根据牛顿第三定律可知,斜面体对地面的作用力大小也是Mg-mg; Ff=FTsin θ得Ff=mg。 故C正确,D错误。 4、(2018·福建省三明月考)直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示。设投放初速度为零,箱子所受的空气阻力与箱子下落速度的二次方成正比,且运动过程中箱子始终保持图示姿态。在箱子下落过程中,下列说法正确的是(  ) A.箱内物体对箱子底部始终没有压力 B.箱子刚从飞机上投下时,箱内物体受到的支持力最大 C.箱子接近地面时,箱内物体受到的支持力比刚投下时大 D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 答案C 解析由于箱子在下降的过程中受到空气的阻力,加速度的大小要小于重力加速度,由牛顿第二定律可知物体一定要受到箱子底部对物体的支持力的作用,所以A错误。箱子刚从飞机上投下时,箱子的速度为零,此时受到的阻力的大小也为零,此时加速度的大小为重力加速度,物体处于完全失重状态,箱内物体受到的支持力为零;箱子接近地面时,速度最大,受到的阻力最大,所以箱子底部对物体向上的支持力也是最大的,所以B错误,C正确。由以上的分析可知,箱子底部对物体向上的支持力随速度的增大而增大,所以不可能“飘起来”,所以D错误。 5、质量为m的小球由轻绳a和b系于一轻质木架上的A点和C点,如图所示。当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向、绳b在水平方向。当小球运动到图示位置时。绳b被烧断,同时杆也停止转动,则(  ) A.小球仍在水平面内做匀速圆周运动 B.在绳被烧断瞬间,a绳中张力突然减小 C.若角速度ω较小,小球在垂直于平面ABC的竖直平面内摆动 D.若角速度ω较大,小球可以在垂直于平面ABC的竖直平面内做圆周运动 答案CD 解析小球原来在水平面内做匀速圆周运动,绳b被烧断后,小球在垂直于平面ABC的竖直平面内摆动或圆周运动,故A错误;绳b被烧断前,小球在竖直方向没有位移,加速度为零,a绳中张力等于重力,在绳b被烧断瞬间,a绳中张力与重力的合力提供小球的向心力,而向心力竖直向上,绳a的张力将大于重力,即张力突然增大,故B错误;若角速度ω较小,小球原来的速度较小,小球在垂直于平面ABC的竖直平面内摆动,故C正确;若角速度ω较大,小球原来的速度较大,小球可能在垂直于平面ABC的竖直平面内做圆周运动,故D正确。 6、如图所示,质量相同的可视为质点的甲、乙两小球,甲从竖直固定的光滑圆弧轨道顶端由静止滑下,轨道半径为R,圆弧底端切线水平,乙从高为R的光滑斜面顶端由静止滑下。下列判断正确的是(  ) A.两小球到达底端时速度相同 B.两小球由静止运动到底端的过程中重力做功不相同 C.两小球到达底端时动能相同 D.两小球到达底端时,甲小球重力做功的瞬时功率大于乙小球重力做功的瞬时功率 答案C 解析根据机械能守恒定律可得两小球到达底端时速度大小v=,但方向不同,所以选项A错误;两小球由静止运动到底端的过程中重力做功相同,则两小球到达底端时动能相同,所以选项C正确,B错误;两小球到达底端时,甲小球重力做功的瞬时功率为零,乙小球重力做功的瞬时功率大于零,所以选项D错误。 7、质量为1 kg的物体做直线运动,其速度—时间图象如图所示,则物体在前10 s内和后10 s内所受外力的冲量分别是(  )                     A.10 N·s,10 N·s B.10 N·s,-10 N·s C.0,10 N·s D.0,-10 N·s 答案D 解析由题图可知,在前10 s内初、末状态的动量相等,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内p2=-5 kg·m/s,I2=p3-p2=-10 N·s,故选D。 8、如图所示电路中,电源电动势为E、内阻为r、R0为定值电阻,电容器的电容为C。闭合开关S,增大可变电阻R的阻值,电压表示数的变化量为ΔU,电流表示数的变化量为ΔI,则(  ) A.变化过程中ΔU和ΔI的比值保持不变 B.电压表示数U和电流表示数I的比值不变 C.电阻R0两端电压减小,减小量为ΔU D.电容器所带的电荷量增大,增加量为CΔU 答案AD 解析闭合开关S,增大可变电阻R的阻值,电流表示数减小,电压表示数增大,变化过程中ΔU和ΔI的比值等于定值电阻R0与电源内阻r之和,保持不变;电压表示数U和电流表示数I的比值等于可变电阻R的阻值,逐渐增大,选项A正确,B错误;电阻R0两端电压减小,减小量小于ΔU,选项C错误;电容器所带的电荷量增大,增加量为CΔU,选项D正确。 9、真空中两根金属导线平行放置,其中一根导线中通有恒定电流。在导线所确定的平面内,一电子从P点运动的轨迹的一部分如图中的曲线PQ所示,则一定是(  ) A.ab导线中通有从a到b方向的电流 B.ab导线中通有从b到a方向的电流 C.cd导线中通有从c到d方向的电流 D.cd导线中通有从d到c方向的电流 答案C 解析通过观察电子的运动轨迹,靠近导线cd处,电子的偏转程度大,说明靠近cd处偏转半径较小;在磁场中运动的电子所受洛伦兹力永远不做功,故电子速率不变,由带电粒子在磁场中运动的半径公式r=知,偏转半径小说明cd处磁感应强度较大,所以cd导线中通有电流;根据曲线运动的特点,合外力指向弧内,即洛伦兹力指向左侧,根据左手定则可知cd左侧区域磁场方向垂直纸面向里,再由安培定则可知,电流的方向从c到d,故C项正确。 10、如图所示的匀强磁场中有一个矩形闭合导线框,在下列四种情况下,线框中会产生感应电流的是(  )                     A.如图甲,保持线框平面始终与磁感线平行,线框在磁场中左右运动 B.如图乙,保持线框平面始终与磁感线平行,线框在磁场中上下运动 C.如图丙,线框绕位于线框平面内且与磁感线垂直的轴线AB转动 D.如图丁,线框绕位于线框平面内且与磁感线平行的轴线CD转动 答案C 解析保持线框平面始终与磁感线平行,线框在磁场中左右运动,磁通量一直为零,故磁通量不变,无感应电流,选项A错误;保持线框平面始终与磁感线平行,线框在磁场中上下运动,磁通量一直为零,故磁通量不变,无感应电流,选项B错误;线框绕位于线框平面内且与磁感线垂直的轴线AB转动,磁通量改变,故有感应电流,选项C正确;线框绕位于线框平面内且与磁感线平行的轴线CD转动,磁通量一直为零,故磁通量不变,无感应电流,选项D错误。 11、边长为a的N匝正方形线圈在匀强磁场中绕垂直于磁感线且与线圈在同一平面内的对称轴匀速转动,转速为n,线圈所围面积内的磁通量Φ随时间t变化的规律如图所示,图象中Φ0为已知。则下列说法正确的是(  ) A.t1时刻线圈中感应电动势最大 B.t2时刻线圈中感应电流为零 C.匀强磁场的磁感应强度大小为 D.线圈中瞬时感应电动势的表达式为e=2NπΦ0ncos 2πnt 答案D 解析t1时刻线圈的磁通量最大,但磁通量的变化率为0,根据法拉第电磁感应定律可知此时线圈中感应电动势为0,A项错误;t2时刻线圈的磁通量为零,但磁通量的变化率最大,根据法拉第电磁感应定律可知此时线圈中感应电流为最大值,B项错误;磁通量与线圈匝数无关,根据磁通量的定义可得Φ0=Ba2,B=,C项错误;线圈中瞬时感应电动势的表达式为e=NBSωcos ωt=2NπΦ0ncos 2πnt,D项正确。 12、研究放射性元素射线性质的实验装置如图所示。两块平行放置的金属板A、B分别与电源的两极a、b连接,放射源发出的射线从其上方小孔向外射出。则(  ) A.a为电源正极,到达A板的为α射线 B.a为电源正极,到达A板的为β射线 C.a为电源负极,到达A板的为α射线 D.a为电源负极,到达A板的为β射线 答案B 解析粒子在平行板电容器间做类平抛运动,竖直方向上y=v0t,水平方向上x=at2=t2,联立两个方程可得y=v0,已知β粒子的速度为0.9c左右,α粒子的速度为0.1c,β粒子的质量是α粒子的,电荷数为α粒子的,所以β粒子和α粒子竖直方向上的位移之比为<1,所以偏转距离小的应该是β粒子,即向左偏的射线,a极应该为电源正极。选项B正确。 13、下列说法正确的是(  ) A.分子间距离增大时,分子间的引力减小,斥力增大 B.当分子间的作用力表现为引力时,随分子间距离的增大分子势能增大 C.一定质量的理想气体发生等温膨胀,一定从外界吸收热量 D.一定质量的理想气体发生等压膨胀,一定向外界放出热量 E.熵的大小可以反映物体内分子运动的无序程度 答案BCE 解析分子间距离增大时,分子间的引力和斥力均减小,选项A错误;当分子间的作用力表现为引力时,随分子间距离的增大分子势能增大,选项B正确;一定质量的理想气体发生等温膨胀,温度不变,内能不变,对外做功,一定从外界吸收热量,选项C正确;一定质量的理想气体发生等压膨胀,对外做功,根据盖—吕萨克定律,等压膨胀,温度一定升高,内能增大,一定吸收热量,选项D错误;熵是系统内分子运动无序性的量度,其大小可以反映物体内分子运动的无序程度,选项E正确。 14、如图所示,一块上、下表面平行的玻璃砖的厚度为l,玻璃砖的折射率n=,若光从上表面AB射入,入射角i=60°,光在真空中的光速为c,则(  ) A.折射角γ=30° B.光在玻璃中传播的时间为 C.光在玻璃中传播的时间为 D.改变入射角i,光在下表面CD可能发生全反射 E.光一定能从CD面射出 答案ACE 解析由n=得sin γ==0.5,得γ=30°,故A正确;光在玻璃中传播的速度为v=,由几何知识可知光在玻璃中传播的路程为s=,则光在玻璃中传播的时间为t=,故B错误,C正确;由于光在CD面上的入射角等于光在AB面上的折射角,根据光路可逆性原理可知光一定能从CD面射出,故D错误,E正确。 2019高考人教物理选择题金选题(2)及答案 1、甲、乙两车从同一地点沿相同方向由静止开始做直线运动,它们运动的加速度随时间变化图象如图4所示。关于两车的运动情况,下列说法正确的是(  ) 图4 A.在0~4 s内甲车做匀加速直线运动,乙车做加速度减小的加速直线运动 B.在0~2 s内两车间距逐渐增大,2~4 s内两车间距逐渐减小 C.在t=2 s时甲车速度为3 m/s,乙车速度为4.5 m/s D.在t=4 s时甲车恰好追上乙车 解析 在0~4 s内,甲车做匀加速直线运动,而乙车做加速度逐渐减小的加速直线运动,选项A正确;在a-t图象中,图线与坐标轴围成的面积等于物体的速度变化,因两车的初速度为零,故面积的大小等于两车的速度大小,即t=2 s时甲车速度为3 m/s,乙车速度为4.5 m/s,选项C正确;两车沿相同方向由静止开始运动,由a-t图象可知,4 s时两车的速度相等,此时两车的间距最大,选项B、D错误。 答案 AC 2、(2018·山东冠县期初)下列说法正确的是(  ) A.高速公路上限速牌上的速度值指平均速度 B.运动员在处理做香蕉球运动的足球时,要将足球看成质点 C.运动员的链球成绩是指链球从离开手到落地的位移大小 D.选取不同的参考系,同一物体的运动轨迹可能不同 答案D 解析高速公路上限速牌上的速度指瞬时速度,A错;运动员在处理做香蕉球运动的足球时,要考虑足球的旋转,不可把足球看成质点,B错;运动员的链球成绩是指链球运动员所站圆心到落地点的位移,C错;选取不同的参考系,同一物体的运动轨迹可能不同,D对。 3、如图所示,小球用细绳系住,绳的另一端固定于O点。现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是(  ) A.FN不断增大,FT先减小后增大 B.FN保持不变,FT先增大后减小 C.FN保持不变,FT不断增大 D.FN不断增大,FT不断减小 答案A 解析先对小球进行受力分析,重力、支持力FN、拉力FT组成一个闭合的矢量三角形,由于重力不变、支持力FN方向不变,斜面向左移动的过程中,拉力FT与水平方向的夹角β减小,当β=θ时,FT⊥FN,细绳的拉力FT最小,由图可知,随β的减小,斜面的支持力FN不断增大,FT先减小后增大。故A正确,B、C、D错误。 4、如图所示,在竖直平面内有半径为R和2R的两个圆,两圆的最高点相切,切点为A,B和C分别是小圆和大圆上的两个点,其中AB长为R,AC长为2R。现沿AB和AC建立两条光滑轨道,自A处由静止释放小球,已知小球沿AB轨道运动到B点所用时间为t1,沿AC轨道运动到C点所用时间为t2,则t1与t2之比为(  )                     A.1∶ B.1∶2 C.1∶ D.1∶3 答案A 解析设AB与竖直方向的夹角为θ,如图所示,则AB=2Rcos θ 由牛顿第二定律得物体沿AB下滑的加速度为a=gcos θ 解得在AB上运动的时间为t1,则AB=,解得t1=2; 设AC与竖直方向的夹角为α,则AC=4Rcos α 由牛顿第二定律得物体沿AC下滑的加速度为a=gcos α 可知物体在AC上运动的时间为t2=2, 所以,A正确,B、C、D错误。 5、假设宇宙中有两颗相距无限远的行星A和B,半径分别为RA和RB,这两颗行星周围卫星的运行周期的二次方(T2)与轨道半径的三次方(r3)的关系如图所示,T0为卫星环绕行星表面运行的周期,则(  ) A.行星A的质量小于行星B的质量 B.行星A的密度大于行星B的密度 C.行星A的第一宇宙速度小于行星B的第一宇宙速度 D.当两行星的正常轨道半径相同时,卫星的角速度也相同 答案AC 解析根据万有引力提供向心力,有G=mR,得T= 对于环绕行星A表面运行的卫星,有T0= ① 对于环绕行星B表面运行的卫星,有T0= ② 联立①②得 ③ 由题图知RAmQ,又vPmQ,所以FTP>FTQ,C选项正确;向心加速度a==2g,与质量和绳长均无关系,D选项错误。 7、如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则(  ) A.左方是A球,碰撞后A、B两球速度大小之比为2∶5 B.左方是A球,碰撞后A、B两球速度大小之比为1∶10 C.右方是A球,碰撞后A、B两球速度大小之比为2∶5 D.右方是A球,碰撞后A、B两球速度大小之比为1∶10 答案A 解析由两球的动量都是6 kg·m/s可知,运动方向都向右,且能够相碰,说明左方是质量小速度大的小球,故左方是A球。碰后A球的动量减少了4 kg·m/s,即A球的动量为2 kg·m/s,由动量守恒定律知B球的动量为10 kg·m/s,则其速度比为2∶5,故选项A是正确的。 8、某种小灯泡的伏安特性曲线如图甲所示,三个完全相同的这种小灯泡连接成如图乙所示的电路,电源的内阻为1.0 Ω。现闭合开关S,理想电压表V的示数为4.0 V,则 (  ) A.三个灯泡的总电阻为8.3 Ω B.电源的电动势为5.6 V C.电源消耗的热功率为3.0 W D.电源的效率为89.3% 答案ABD 解析理想电压表V的示数为4.0 V,可知串联的灯泡电流0.6 A,此时小灯泡电阻 Ω= Ω;每个并联灯泡的电流为0.3 A,电压1.0 V,此时小灯泡电阻RL= Ω= Ω,所以总电阻为R总= Ω+ Ω=8.3 Ω,A正确;电动势等于E=4 V+1 V+0.6×1.0 V=5.6 V,B正确;电源消耗的热功率为P热=0.62×1.0 W=0.36 W,C错误;电源效率η=×100%=89.3%,D正确。 9、如图所示,甲、乙两个带等量异种电荷而质量不同的带电粒子,以相同的速率经小孔P垂直磁场边界MN,进入方向垂直纸面向外的匀强磁场,在磁场中做匀速圆周运动,并垂直磁场边界MN射出磁场,运动轨迹如图中虚线所示。不计粒子所受重力及空气阻力,下列说法正确的是(  ) A.甲带负电荷,乙带正电荷 B.甲的质量大于乙的质量 C.洛伦兹力对甲做正功 D.甲在磁场中运动的时间等于乙在磁场中运动的时间 答案B 解析甲、乙等量异种电荷在同一磁场中受洛伦兹力运动,洛伦兹力的方向不同,根据左手定则,可以判断甲带正电荷,乙带负电荷,故A项错误;洛伦兹力方向始终垂直于粒子的速度方向,对甲、乙都不做功,故C项错误;粒子在磁场中的运动半径为r=,甲、乙电荷量和速率相同,甲的运动半径大,所以甲的质量大于乙的质量,故B项正确;粒子在磁场中运动的周期T=,甲、乙都运动了半个周期,由于周期不等,所以两者在磁场中运动的时间不相等,故D项错误。 10、如图甲为磁感应强度B随时间t的变化规律,磁场方向垂直纸面,规定向里的方向为正。在磁场中有一细金属圆环,平面位于纸面内,如图乙所示。令I1、I2、I3分别表示Oa、ab、bc段的感应电流,F1、F2、F3分别表示金属环上很小一段导体受到的安培力。下列说法不正确的是(  ) A.I1沿逆时针方向,I2沿顺时针方向 B.I2沿顺时针方向,I3沿顺时针方向 C.F1方向指向圆心,F2方向指向圆心 D.F2方向背离圆心向外,F3方向指向圆心 答案C 解析由题图甲所示可知,Oa段,磁场垂直于纸面向里,穿过圆环的磁通量增加,由楞次定律可知,感应电流I1沿逆时针方向,在ab段磁场向里,穿过圆环的磁通量减少,由楞次定律可知,感应电流I2沿顺时针方向,故A正确;由图甲所示可知,在bc段,磁场向外,磁通量增加,由楞次定律可知,感应电流I3沿顺时针方向,故B正确;由左手定则可知,Oa段电流受到的安培力F1方向指向圆心,ab段安培力F2方向背离圆心向外,故C错误;由左手定则可知,ab段安培力F2方向背离圆心向外,bc段,安培力F3方向指向圆心,故D正确;此题选择错误选项,故选C。 11、如图所示,边长为l、匝数为N、电阻不计的正方形线圈abcd,在磁感应强度为B的匀强磁场中绕转轴OO'以角速度ω匀速转动,轴OO'垂直于磁感线,制成一台交流发电机,它与理想变压器的原线圈连接,变压器原、副线圈的匝数之比为1∶2。二极管的正向电阻为零,反向电阻无穷大,从正方形线圈处于图示位置开始计时,下列判断正确的是(  ) A.交流发电机的感应电动势的瞬时值表达式为e=NBωl2sin ωt B.变压器的输入功率与输出功率之比为2∶1 C.电压表V示数为NBωl2 D.若将滑动变阻器的滑片向下滑动,电流表和电压表示数均减小 答案C 解析从图示位置开始计时,e=Emcos ωt=NBl2ωcos ωt,A错误;变压器的输入功率等于输出功率,B错误;副线圈两端电压的最大值为2NBl2ω,电压表的示数是R两端电压的有效值,设为U,·T,解得U=NBl2ω,C正确;若将滑动变阻器的滑片向下移动,电压表的示数不变,电流表的示数减小,D错误。 12、物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展。下列说法符合事实的是(  ) A.赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论 B.查德威克用α粒子轰击N获得反冲核O,发现了中子 C.贝可勒尔发现的天然放射性现象,说明原子核有复杂结构 D.卢瑟福通过对阴极射线的研究,提出了原子核式结构模型 答案AC 解析查德威克通过用α粒子轰击铍核的实验发现了中子,选项B错误;卢瑟福通过α粒子散射实验提出了原子的核式结构模型,选项D错误。 13、对于一定质量的理想气体,下列论述中正确的是(  ) A.若单位体积内分子个数不变,当分子热运动加剧时,压强一定变大 B.若单位体积内分子个数不变,当分子热运动加剧时,压强可能不变 C.若气体的压强不变而温度降低时,则单位体积内分子个数一定增加 D.若气体的压强不变而温度降低时,则单位体积内分子个数可能不变 E.若气体体积减小,温度升高,单位时间内分子对器壁的撞击次数增多,平均撞击力增大,因此压强增大 答案ACE 解析气体压强的大小与气体分子的平均动能和单位体积内的分子数两个因素有关。若单位体积内分子数不变,当分子热运动加剧时,决定压强的两个因素中一个不变,一个增大,故气体的压强一定变大,A对,B错;若气体的压强不变而温度降低时,气体的体积一定减小,故单位体积内的分子个数一定增加,C对,D错;由气体压强产生原因知,E对。 14、如图所示,a、b、c、d四个图是不同的单色光形成的双缝干涉或单缝衍射图样。分析各图样的特点得出的下列结论错误的是(  ) A.a、b是光的干涉图样 B.c、d是光的干涉图样 C.形成a图样的光的波长比形成b图样光的波长短 D.形成c图样的光的波长比形成d图样光的波长短 答案BCD 解析干涉条纹是等距离的条纹,因此,a、b图是干涉图样,c、d图是衍射图样,故A项正确,B项错误;由公式Δx=λ可知,条纹宽的入射光的波长长,所以a图样的光的波长比b图样的光的波长长,故C项错误;c图样的光的波长比d图样的光的波长长,故D项错误。 2019高考人教物理选择题金选题(4)及答案 1、(多选) “木星冲日”是指木星和太阳正好分处地球的两侧,三者成一条直线.木星和地球绕太阳公转的方向相同,公转轨迹都近似为圆.设木星公转半径为R1,周期为T1;地球公转半径为R2,周期为T2,下列说法正确的是(  ) A.=() B.=() C.“木星冲日”这一天象的发生周期为 D.“木星冲日”这一天象的发生周期为 【答案】BD  【解析】由开普勒第三定律得=,解得:==(),故A错误,B正确;当再次发生“木星冲日”时,地球与木星两者转过的角度相差2π,所以t-t=2π,解得:t=,故C错误,D正确. 2、物体由静止开始做匀加速直线运动,加速8 s后,立即做匀减速直线运动,再经过4 s停下。关于该物体的运动情况,下列说法正确的是(  ) A.加速、减速过程中的加速度大小之比为2∶1 B.加速、减速过程中的平均速度大小之比为2∶1 C.加速、减速过程中的位移大小之比为2∶1 D.加速、减速过程中速度的变化率大小之比为2∶1 答案C 解析设加速后物体最大速度为v,则加速运动的加速度大小a1=,减速运动的加速度大小a2=,则加速、减速过程中的加速度大小之比为a1∶a2=4∶8=1∶2,选项A错误。对于匀变速直线运动,平均速度等于初速度与末速度的平均值,则题述加速运动和减速运动的速度平均值相等,所以加速、减速过程中的平均速度大小之比为1∶1,选项B错误。两个阶段运动的时间之比为8 s∶4 s=2∶1,根据位移等于平均速度乘以时间可知,加速、减速过程中的位移大小之比为2∶1,选项C正确。由于加速度等于速度的变化率,所以加速、减速过程中速度的变化率大小之比为1∶2,选项D错误。 3、如图所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P顶点上的小滑轮,一端系有质量为m=3 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=10 N,整个系统处于平衡状态,g取10 m/s2,则以下说法正确的是(  ) A.1和2之间的摩擦力是10 N B.2和3之间的摩擦力是25 N C.3与桌面间的摩擦力为15 N D.物块3受6个力作用 答案D 解析物体1受重力和支持力而平衡,不受静摩擦力,否则不能平衡,故A错误;对1与2整体分析,受重力、支持力、拉力和静摩擦力,根据平衡条件,3对1与2整体的静摩擦力向左,与拉力平衡,为10 N,故2和3之间的摩擦力是10 N,故B错误;对m受力分析,受重力、支持力与绳子的拉力,由平衡条件,结合力的平行四边形定则可知,绳子的拉力F=mgsin 30°=15 N,则3与桌面之间的摩擦力是(15-10)N=5 N,即3与桌面间摩擦力为5 N,故C错误;对物块3受力分析,受重力、支持力、2对3的压力、绳子对3向左的拉力、2对3水平向右静摩擦力、绳子对3向左的拉力、桌面对3静摩擦力,共受到6个力,故D正确;故选D。 4、如图所示,一个质量为M=2 kg的小木板放在光滑的水平地面上,在木板上放着一个质量为m=1 kg的小物体,它被一根水平方向上压缩了的弹簧推着静止在木板上,这时弹簧的弹力为2 N。现沿水平向左的方向对小木板施以作用力,使木板由静止开始运动起来,运动中力F由0逐渐增加到9 N,以下说法正确的是 (  ) A.物体与小木板先保持相对静止一会,后相对滑动 B.物体受到的摩擦力一直减小 C.当力F增大到6 N时,物体不受摩擦力作用 D.小木板受到9 N的拉力时,物体受到的摩擦力为3 N 答案C 解析由题,当弹簧的弹力是2 N向左时,物体仍然静止在木板上,所以物体与木板之间的最大静摩擦力要大于或等于2 N。若要使物体相对于木板向右滑动,则物体受到向右的合力至少为4 N的力,物体的加速度为a= m/s2=4 m/s2 同时,物体与木板有相对运动时,木板的加速度要大于物体的加速度,当二者相等时,为最小拉力。则有 Fmin=(M+m)a=(2+1)×4 N=12 N 即只有在拉力大于12 N时,物体才能相对于木板滑动,所以在拉力小于9 N时,物体相对于木板静止。故A错误。 若物体与木板之间的摩擦力恰好为0,则物体只受到弹簧的弹力的作用,此时物体的加速度为 a'= m/s2=2 m/s2 由于物体始终相对于木板静止,所以此时整体在水平方向的受力为F0=(M+m)a'=(2+1)×2 N=6 N 所以当力F增大到6 N时,物体不受摩擦力作用。 则拉力小于6 N之前,摩擦力随拉力F的增大而减小,当拉力大于6 N时,摩擦力又随拉力的增大而增大。 故B错误,C正确。 小木板受到9 N拉力时,整体的加速度 a″= m/s2=3 m/s2 物体受到的摩擦力为Ff',则ma″=Ff'+2 N 所以Ff'=ma″-2 N=1 N。故D错误。 5、如图为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法正确的是(  )                     A.质点经过C点的速率比D点的大 B.质点经过A点时的加速度方向与速度方向的夹角小于90° C.质点经过D点时的加速度比B点的大 D.质点从B点到E点的过程中加速度方向与速度方向的夹角先增大后减小 答案A 解析质点做匀变速曲线运动,所以加速度不变;由于在D点速度方向与加速度方向垂直,则在C点时速度方向与加速度方向的夹角为钝角,所以质点由C到D速率减小,C点速率比D点大。 6、在离水平地面h高处将一质量为m的小球水平抛出,在空中运动的过程中所受空气阻力大小恒为Ff,落地时小球距抛出点的水平距离为x,速率为v,那么,在小球运动的过程中(  ) A.重力做功为mgh B.克服空气阻力做的功为Ff C.落地时,重力的瞬时功率为mgv D.重力势能和机械能都逐渐减少 答案AD 解析重力做功为WG=mgh,A正确;空气阻力做功与经过的路程有关,而小球经过的路程大于,故克服空气阻力做的功大于Ff,B错误;落地时,重力的瞬时功率为重力与沿重力方向的分速度的乘积,故落地时重力的瞬时功率小于mgv,C错误;重力做正功,重力势能减少,空气阻力做负功,机械能减少,D正确。 7、“爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志。有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向东;则另一块的速度为(  ) A.3v0-v B.2v0-3v C.3v0-2v D.2v0+v 答案C 解析取水平向东为正方向,爆炸过程系统动量守恒,3mv0=2mv+mvx,可得vx=3v0-2v,C正确。 8、.如图所示的电路中,电源电动势为12 V,内阻为2 Ω,四个电阻的阻值已在图中标出。闭合开关S,下列说法正确的有(  ) A.路端电压为10 V B.电源的总功率为10 W C.a、b间电压的大小为5 V D.a、b间用导线连接后,电路的总电流为1 A 答案AC 解析已知电路中的总电阻R总=2 Ω+ Ω=12 Ω,干路电流I总=1 A,各支路电流为0.5 A,路端电压U=E-I总r=12 V-1 A×2 Ω=10 V,选项A正确;电源的总功率P总=EI总=12 V×1 A=12 W,选项B错误;设电源负极电势为0,a点电势为φa=UaO=0+0.5 A×5 Ω=2.5 V,b点电势为φb=0+0.5 A×15 Ω=7.5 V,所以|Uab|=7.5 V-2.5 V=5 V,选项C正确;用导线将a、b连接,总电阻为R总'=2 Ω+ Ω+ Ω=9.5 Ω,据I=知电路总电流不等于1 A,选项D错误。 9、(2017·江苏无锡模拟)右图为某种质谱仪的工作原理示意图。此质谱仪由以下几部分构成:粒子源N;P、Q间的加速电场;静电分析器,即中心线半径为r的圆形通道,通道内有均匀辐射电场,方向沿径向指向圆心O,且与圆心O等距的各点电场强度大小相等;磁感应强度为B的有界匀强磁场,方向垂直纸面向外;胶片M。由粒子源发出的不同带电粒子,经加速电场加速后进入静电分析器,某些粒子能沿中心线通过静电分析器并经小孔S垂直磁场边界进入磁场,最终打到胶片上的某点。粒子从粒子源发出时的初速度不同,不计粒子所受重力。下列说法正确的是(  ) A.从小孔S进入磁场的粒子速度大小一定相等 B.从小孔S进入磁场的粒子动能一定相等 C.打到胶片上同一点的粒子速度大小一定相等 D.打到胶片上位置距离O点越远的粒子,比荷越大 答案C 解析从小孔S进入磁场,说明粒子在电场中运动半径相同,在静电分析器中,qE=,无法判断出粒子的速度和动能是否相等,选项A、B错误;打到胶片上同一点的粒子,在磁场中运动半径相同,由qvB=m,得r'=,联立qE=,可得r'=,所以打到胶片上同一点的粒子速度相等,与比荷无关,选项C正确,选项D错误。 10、如图甲所示,水平面上的平行导轨MN、PQ上放着两根导体棒ab、cd,两棒间用绝缘丝线系住。开始匀强磁场垂直纸面向里,磁感应强度B随时间t的变化如图乙所示,图线与t轴的交点为t0。I和FT分别表示通过导体棒中的电流和丝线的拉力(不计电流间的相互作用)。则在t0时刻(  ) A.I=0,FT=0 B.I=0,FT≠0 C.I≠0,FT=0 D.I≠0,FT≠0 答案C 解析由题图乙看出,磁感应强度B随时间t做均匀变化,则穿过回路的磁通量随时间也做均匀变化,根据法拉第电磁感应定律可知回路中将产生恒定的感应电流,所以I≠0。但t0时刻B=0,两棒都不受安培力,故丝线的拉力FT=0。所以C正确。 11、标有“220 V 100 W”的一灯泡接在u=311sin 314t V的正弦交变电流上,则(  ) A.产生该交变电流的发电机转速为每分钟50转 B.与该灯泡串联的理想电流表读数为0.64 A C.与该灯泡并联的理想电压表读数为311 V D.通过该灯泡的电流i=0.64sin 314t A 答案D 解析灯泡接在u=311sin 314t V的正弦交变电流上,ω=314 rad/s,所以产生该交变电流的发电机转速为每秒50转,故A错误;由交变电流u=311sin 314t V可知,电压的最大值Um=311 V,有效值U=Um=220 V,可以使“220 V 100 W”的灯泡正常发光,电流表的电流I==0.46 A,故B错误;与灯泡并联的交流电压表测量时,读数为220 V,故C错误;灯泡的最大电流为Im=I=0.64 A,因此通过灯泡的电流i=0.64sin 314t A,故D正确。 12、下列说法正确的是(  ) A.爱因斯坦在光的粒子性的基础上,建立了光电效应方程 B.康普顿效应表明光子只具有能量,不具有动量 C.玻尔的原子理论成功地解释了氢原子光谱的实验规律 D.卢瑟福根据α粒子散射实验提出了原子的核式结构模型 E.德布罗意指出微观粒子的动量越大,其对应的波长就越长 答案ACD 解析爱因斯坦提出了光子假说,建立了光电效应方程,故选项A正确;康普顿效应表明光不仅具有能量,还具有动量,故选项B错误;玻尔的原子理论成功地解释了氢原子光谱的实验规律,故选项C正确;卢瑟福根据α粒子散射实验提出了原子核式结构模型,故选项D正确;微观粒子的德布罗意波长为λ=,其中p为微观粒子的动量,故动量越大,则对应的波长就越短,选项E错误。 13、如图所示,一定质量的理想气体,从图示A状态开始,经历了B、C,最后到D状态,下列判断中正确的是(  ) A.A→B温度升高,压强不变 B.B→C体积不变,压强变大 C.B→C体积不变,压强不变 D.C→D体积变小,压强变大 答案AD 解析由图象可知,在A→B的过程中,气体温度升高,体积变大,且体积与温度成正比,由=C,气体压强不变,故A正确;由图象可知,在B→C的过程中,体积不变而热力学温度降低,由=C可知,压强p减小,故B、C错误;由图象可知,在C→D的过程中,气体温度不变,体积减小,由=C可知,压强p增大,故D正确。 14、以下说法正确的有(  ) A.阳光下肥皂膜上的彩色条纹属于光的衍射现象 B.太阳光通过三棱镜产生的彩色条纹是由于折射造成的 C.一束光由介质斜射向空气,界面上可能只发生反射现象而没有折射现象 D.水面油膜呈现彩色条纹是光的干涉现象,这说明了光是一种波 E.未见其人,先闻其声说明声波有衍射现象而光波没有衍射现象 答案BCD 解析阳光下肥皂膜上的彩色条纹属于光的干涉现象,A错误;太阳光通过三棱镜产生的彩色条纹是由于折射造成的,B正确;一束光由介质斜射向空气,界面上可能只发生反射现象而没有折射现象,C正确;水面油膜呈现彩色条纹是光的干涉现象,干涉是波特有的现象,这说明了光是一种波,D正确;未见其人,先闻其声说明声波有衍射现象,一切波均能发生衍射,E错误。 2019高考人教物理选择题金选题(5)及答案 1、如图所示,小球A、B穿在一根光滑固定的细杆上,一条跨过定滑轮的细绳两端连接两小球,杆与水平面成θ角,小球可看做质点且不计所有摩擦.当两球静止时,OA绳与杆的夹角为θ,绳OB沿竖直方向,则下列说法正确的是(  ) 图 A.小球A受到2个力的作用 B.小球A受到3个力的作用 C.杆对B球的弹力方向垂直杆斜向上 D.绳子对A的拉力大于对B的拉力 答案 B 2、甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。已知t=t1时刻,两汽车并排行驶。则在这段时间内(  ) A.甲、乙两汽车的位移相同 B.两汽车的平均速度均为 C.t=0时刻,汽车乙在汽车甲前方 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案C 解析v-t图象与时间轴围成的面积表示位移,故甲的位移大于乙的位移,而在t1时刻两者相遇,所以t=0时刻,汽车乙在汽车甲前方,A错误,C正确;由于甲车做变加速运动,平均速度不等于,如图所示,虚线表示匀加速直线运动,其平均速度等于,而匀加速直线运动的位移小于该变加速运动的位移,故甲的平均速度大于,由于乙车做变减速运动,平均速度不等于,如图所示,直线AB表示匀减速直线运动,其平均速度等于,而匀减速直线运动的位移大于该变减速运动的位移,故乙的平均速度小于,故B错误;图象的斜率表示加速度,故两者的加速度都在减小,D错误。 3、(2018·山东临沭一中月考)如图所示,横截面为直角三角形的斜劈A,底面靠在粗糙的竖直墙面上,力F通过球心水平作用在光滑球B上,系统处于静止状态。当力F增大时,系统仍保持静止。则下列说法正确的是(  ) A.A受到的摩擦力一定增大   B.墙对A的弹力一定减小 C.A对B的弹力一定增大 D.B对地的压力一定增大 答案CD 解析设A、B的总质量为M,A的质量为m。 对B受力分析,如图: 根据平衡条件:F=FN'sin θ,可见F增大则FN'增大,即A、B之间的弹力增大,FN″=mg+FN'cos θ,可见FN'增大则FN″增大,根据牛顿第三定律,则B球对地面的压力增大,以整体为研究对象,竖直方向:FN″+Ff=Mg,若FN″增大至与Mg相等,则Ff=0,所以A受到的摩擦力减小,故A错误,C、D正确;以整体为研究对象,受力分析,根据平衡条件,水平方向:FN=F,F增大则FN增大,故B错误。 4、如图,带有竖直支柱的斜面体静止在水平地面上,光滑的小球被轻质细线和轻弹簧系住静止于斜面体上,弹簧处于拉伸状态,现烧断细线,则在细线烧断瞬间(  ) A.小球加速度方向沿斜面向下 B.小球所受合外力为零 C.斜面体对小球的支持力瞬间增大 D.地面对斜面体的支持力瞬间增大 答案AC 解析细线烧断的瞬间,弹簧的弹力不变,仍然沿斜面向下,小球受重力、支持力和弹簧的弹力作用,合外力沿斜面向下,故A正确,B错误。设开始细绳与斜面的夹角为α,斜面的倾角为θ,细绳烧断前,在垂直斜面方向上有FTsin α+FN=mgcos θ,细线烧断的瞬间,FN=mgcos θ,可知支持力瞬间增大,故C正确。对整体分析,烧断前,整体重力等于支持力,烧断细线的瞬间,小球有沿斜面向下的加速度,小球处于失重状态,则地面支持力变小,故D错误。 5、一质点在xOy平面内运动的轨迹如图所示,下面有四种说法: ①若质点在x方向始终匀速运动,则在y方向先加速后减速; ②若质点在x方向始终匀速运动,则在y方向先减速后加速; ③若质点在y方向始终匀速运动,则在x方向先加速后减速; ④若质点在y方向始终匀速运动,则在x方向先减速后加速。 其中正确的是(  ) A.只有①③ B.只有①④ C.只有②③ D.只有②④ 答案C 解析若质点在x方向始终匀速,x轴可替换成时间轴,根据图线形状可知,质点在y轴方向先减速后加速,②正确;若质点在y方向始终匀速,y轴可替换成时间轴,根据图线形状可知,质点在x轴方向先加速后减速,③正确,故选C。 6、如图所示,半径为R的竖直光滑圆弧轨道与光滑水平面相切,质量均为m的小球A、B与轻杆连接,置于圆弧轨道上,A位于圆心O的正下方,B与O等高。它们由静止释放,最终在水平面上运动。下列说法正确的是(  ) A.下滑过程中重力对B做功的功率先增大后减小 B.当B滑到圆弧轨道最低点时,轨道对B的支持力大小为3mg C.下滑过程中B的机械能增加 D.整个过程中轻杆对A做的功为mgR 答案AD 解析因为初位置速度为零,则重力的功率为零,最低点速度方向与重力的方向垂直,重力的功率为零,可知重力的功率先增大后减小,故A正确;A、B小球组成的系统在运动过程中机械能守恒,设B到达轨道最低点时速度为v,根据机械能守恒定律得 (m+m)v2=mgR,解得v=,在最低点,根据牛顿第二定律得FN-mg=m,解得FN=2mg,故B错误;下滑过程中,B的重力势能减小ΔEp=mgR,动能增加量ΔEk=mv2=mgR,所以B的机械能减小mgR,故C错误;整个过程中,对A根据动能定理得W=mv2=mgR,故D正确。 7、如图所示,一质量m1=3.0 kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m2=1.0 kg的小木块A。给A和B以大小均为4.0 m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B板。在小木块A做加速运动的时间内,木板速度大小可能是(  ) A.1.8 m/s B.2.4 m/s C.2.8 m/s D.3.0 m/s 答案B 解析A先向左减速到零,再向右加速运动,在此期间,木板减速运动,最终它们保持相对静止,设A减速到零时,木板的速度为v1,最终它们的共同速度为v2,取水平向右为正方向,则m1v-m2v=m1v1,m1v1=(m1+m2)v2,可得v1= m/s,v2=2 m/s,所以在小木块A做加速运动的时间内,木板速度大小应大于2.0 m/s而小于m/s,只有选项B正确。 8、安培提出了著名的分子电流假说,根据这一假说,电子绕核运动可等效为一环形电流,设带电荷量为e的电子以速率v绕原子核沿顺时针方向做半径为r的匀速圆周运动,其电流的等效电流I和方向为(  )                     A.,顺时针 B.,顺时针 C.,逆时针 D.,逆时针 答案C 解析电子带负电,负电荷的定向移动方向是形成电流方向的反方向,因电子绕核顺时针方向运动,故电流方向为逆时针方向,选项A、B错误;由匀速圆周运动的周期公式和电流的定义,可得I=,选项C正确,选项D错误。 9、如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M、N两小孔中,O为M、N连线中点,连线上a、b两点关于O点对称;导线均通有大小相等、方向向上的电流;已知长直导线在周围产生的磁场的磁感应强度B=k,式中k是常量、I是导线中电流、r为点到导线的距离;一带正电的小球以初速度v0从a点出发沿连线运动到b点。关于上述过程,下列说法正确的是(  ) A.小球一直做匀速直线运动 B.小球先做加速运动后做减速运动 C.小球对桌面的压力一直在增大 D.小球对桌面的压力先减小后增大 答案AC 解析根据右手螺旋定则可知直线M附近的磁场方向垂直于MN向里,直线N附近的磁场方向垂直于MN向外,磁场大小先减小过O点后反向增大,根据左手定则可知,带正电的小球受到的洛伦兹力方向开始向上,过O点后洛伦兹力的方向向下。由此可知,小球将做匀速直线运动,小球对桌面的压力一直在增大,故A、C正确,B、D错误。故选A、C。 10、有一方向竖直向下、磁感应强度B随时间t的变化关系如图甲所示的匀强磁场,现有如图乙所示的直角三角形导线框abc水平放置,放在匀强磁场中保持静止不动,t=0时刻,磁感应强度B的方向竖直向下,设产生的感应电流i顺时针方向为正、竖直边ab所受安培力F的方向水平向左为正。则下面关于F和i随时间t变化的图象正确的是(  ) 答案A 解析0~3 s时间内,磁感应强度随时间线性变化,由法拉第电磁感应定律可知,感应电动势恒定,回路中感应电流恒定,所以D错误;同时由F=BIL可知,电流恒定,安培力与磁感应强度成正比,又由楞次定律判断出回路中感应电流的方向应为顺时针方向,即正方向,3~4 s时间内,磁感应强度恒定,感应电动势等于零,感应电流为零,安培力等于零,由以上分析可知B、C错误,A正确。 11、(2017·江西赣州一模)如图所示,发电机的矩形线圈面积为S,匝数为N,绕OO'轴在磁感应强度为B的匀强磁场中以角速度ω匀速转动。从图示位置开始计时,下列判断正确的是(  ) A.此时穿过线圈的磁通量为NBS,产生的电动势为零 B.线圈产生的感应电动势的瞬时值表达式为e=NBSωsin ωt C.P向下移动时,电流表示数变小 D.P向下移动时,发电机的电功率增大 答案BD 解析图示位置,磁感线与线圈平面垂直,磁通量最大,即Φ=BS,感应电动势为零,A错误;感应电动势的最大值Em=NBSω,瞬时值表达式e=Emsin ωt=NBSωsin ωt,B正确;P向下移动时,副线圈的匝数n2增大,,U2增大,电流表的示数增大,而发电机的电功率等于变压器的输入功率也等于变压器的输出功率,P=U1I1=U2I2,所以发电机的电功率增大,C错误,D正确。 12、对于物质的波粒二象性,下列说法不正确的是(  ) A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D.实物的运动有特定的轨道,所以实物不具有波粒二象性 答案D 解析光具有波粒二象性是微观世界具有的特殊规律,大量光子运动的规律表现出光的波动性,而单个光子的运动表现出光的粒子性。光的波长越长,波动性越明显,光的频率越高,粒子性越明显,而宏观物体的德布罗意波的波长太小,实际很难观察到波动性,不是不具有波粒二象性。 13、对于分子动理论和物体内能的理解,下列说法正确的是(  ) A.温度高的物体内能不一定大,但分子平均动能一定大 B.外界对物体做功,物体内能一定增加 C.温度越高,布朗运动越显著 D.当分子间的距离增大时,分子间作用力就一直减小 E.当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大 答案ACE 解析温度高的物体分子平均动能一定大,但是内能不一定大,选项A正确;外界对物体做功,若物体同时向外散热,物体内能不一定增加,选项B错误;温度越高,布朗运动越显著,选项C正确;当分子间的距离增大时,分子间作用力可能先增大后减小,选项D错误;当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大,选项E正确。 14、下列五幅图分别对应五种说法,其中正确的是(  ) A.利用沙摆装置演示简谐运动的实验 B.共振曲线 C.波的干涉的示意图 D.泊松亮斑 E.沿x轴正方向传播的一列横波 A.图A中,若匀速拉动木板的速度较大,则由图象测得简谐运动的周期较大 B.由图B可知,系统的固有频率为f0 C.图C中频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,这种现象叫作波的干涉 D.图D中泊松亮斑是小孔衍射形成的图样 E.图E中若简谐波的波速为200 m/s,从图示时刻开始,质点a经0.01 s通过的路程为0.4 m 答案BCE 解析演示简谐运动的图象实验中,若匀速拉动木板的速度较大,会导致图象的横坐标变大,但对应的时间仍不变,简谐运动的周期与单摆的固有周期相同,选项A错误;由图B可知当驱动力的频率f跟固有频率f0相同时,才出现共振现象,振幅才最大,距固有频率f0相差越大,振幅越小,选项B正确;频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,这种现象叫作波的干涉,选项C正确;泊松亮斑是光绕过圆形挡板后衍射形成的图样,选项D错误;由图E可知,该波的波长是4 m,则周期T= s=0.02 s,从图示时刻开始,质点a经0.01 s,即半个周期,a恰好到达负的最大位移处,通过的路程为0.4 m,选项E正确。 2019高考人教物理选择题金选题(6)及答案 1、如图甲所示,质量为m=1 kg、带电荷量为q=2×10-3 C的小物块静置于绝缘水平面上,A点左侧上方存在方向水平向右的匀强电场,小物块运动的v-t图象如图乙所示,取g=10 m/s2,则下列说法正确的是(  ) 图 A.小物块在0~3 s内的平均速度为 m/s B.小物块与水平面间的动摩擦因数为0.4 C.匀强电场的电场强度为3 000 N/C D.物块运动过程中电势能减少了12 J 答案 CD 2、关于自由落体运动的加速度g,下列说法正确的是(  ) A.同一地点轻重不同的物体的g值一样大 B.北京地面的g值比上海地面的g值略大 C.g值在赤道处大于在南北两极处 D.g值在地面任何地方都一样 答案AB 解析在同一地点,轻、重物体的重力加速度g相同,故A正确;在地球表面,随纬度的升高,重力加速度增大,北京地面的g值比上海地面的g值略大,在赤道处的g值小于在南北两极处的g值,故B正确,C、D错误,故选AB。 3、如图所示,质量均为m的两木块a与b叠放在水平面上,a受到斜向上与水平方向成θ角的力作用,b受到斜向下与水平方向成θ角的力作用,两力大小均为F,两木块均保持静止状态,则(  ) A.a、b之间一定存在静摩擦力 B.b与地之间一定存在静摩擦力 C.b对a的支持力一定小于mg D.地对b的支持力一定大于2mg 答案AC 解析对a受力分析,可知a受重力、支持力、拉力和摩擦力而处于平衡,因为力F有水平方向的分力,故a有向右运动的趋势,所以a应受到b向左的摩擦力,A正确;对整体受力分析可知,整体受重力、支持力、两个拉力,将拉力沿水平和竖直方向分解可知,其水平分量相等,其整体在水平方向受力平衡,故地面对b没有摩擦力,B错误;F向上的分量使a受到的支持力小于重力,故C正确;竖直方向上,两分力相互抵消,故ab受地面的支持力等于2mg,故D错误。 4、如图所示,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ。现给环一个水平向右的恒力F,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F1=kv,其中k为常数,则圆环运动过程中(  ) A.最大加速度为 B.最大加速度为 C.最大速度为 D.最大速度为 答案AC 解析当F1=mg,即kv=mg,v=时,圆环水平方向不受摩擦力,则圆环的加速度最大为a=,A正确,B错误;当滑动摩擦力Ff=μ(kv-mg)=F时,对应的速度最大,v=,C正确,D错误。 5、如图所示,小球A位于斜面上,小球B与小球A位于同一高度,现将小球A、B分别以v1和v2的速度水平抛出,都落在了倾角为45°的斜面上的同一点,且小球B恰好垂直打到斜面上,则v1∶v2为(  ) A.3∶2 B.2∶1 C.1∶1 D.1∶2 答案D 解析两小球下落高度相同,故飞行时间相同,由平抛运动的规律可知,对于A球:=1 ①,对于B球:=1 ②,由①②两式解得v1∶v2=1∶2,故应选D。 6、如图所示,轻质弹簧上端固定,下端系一物体。物体在A处时,弹簧处于原长状态。现用手托住物体使它从A处缓慢下降,到达B处时,手和物体自然分开。此过程中,物体克服手的支持力所做的功为W。不考虑空气阻力。关于此过程,下列说法正确的有(  ) A.物体重力势能减少量一定大于W B.弹簧弹性势能增加量一定小于W C.物体与弹簧组成的系统机械能增加量为W D.若将物体从A处由静止释放,则物体到达B处时的动能为W 答案AD 解析根据能量守恒定律可知,在此过程中减少的重力势能mgh=ΔEp+W,所以物体重力势能减小量一定大于W,不能确定弹簧弹性势能增加量与W的大小关系,故A正确,B错误;支持力对物体做负功,所以物体与弹簧组成的系统机械能减少W,所以C错误;若将物体从A处由静止释放,从A到B的过程,根据动能定理Ek=mgh-W弹=mgh-ΔEp=W,所以D正确。 7、如图所示,两质量分别为m1和m2的弹性小球叠放在一起,从高度为h处自由落下,h远大于两小球半径,所有的碰撞都是完全弹性碰撞,且都发生在竖直方向。已知m2=3m1,则小球m1反弹后能达到的高度为(  ) A.h B.2h C.3h D.4h 答案D 解析下降过程为自由落体运动,触地时两球速度相同,v=,m2碰撞地之后,速度瞬间反向,大小相等,选m1与m2碰撞过程为研究过程,碰撞前后动量守恒,设碰后m1、m2速度大小分别为v1、v2,选向上方向为正方向,则 m2v-m1v=m1v1+m2v2 由能量守恒定律得 (m1+m2)v2=m1m2,且m2=3m1 联立解得v1=2 反弹后高度H==4h,D正确。 8、电子式互感器是数字变电站的关键设备之一。如图所示,某电子式电压互感器探头的原理为电阻分压,ac间的电阻是cd间电阻的(n-1)倍,某次测量中输出端数字电压表的示数为U,则输入端的电压为 (  ) A.nU B. C.(n-1)U D. 答案A 解析Rac与Rcd串联,电流I=,对输出端电压Ucd=U=IRcd=,即输入端电压为Uab=nU。 9、(2017·安徽六校教育研究会第一次联考)如图所示,在x轴上方存在垂直于纸面向里的磁感应强度为B的匀强磁场,x轴下方存在垂直于纸面向外的磁感应强度为的匀强磁场。一带负电的粒子质量为m,电荷量为q,从原点O与x轴成θ=30°斜向上射入磁场,且在x轴上方运动半径为r(不计重力),则(  ) A.粒子经偏转一定能回到原点O B.粒子完成一次周期性运动的时间为 C.粒子在x轴上方和下方两磁场中运动的半径之比为1∶2 D.粒子第二次射入x轴上方磁场时,沿x轴方向前进了3r 答案BCD 解析根据左手定则判断可知,粒子在第一象限沿顺时针方向运动,而在第四象限沿逆时针方向运动,故不可能回到原点O,故A错误。因第四象限中磁感应强度为第一象限中的一半,故第四象限中的轨迹半径为第一象限中轨迹半径的2倍,如图所示,由几何关系可知,负电荷在第一象限轨迹所对应的圆心角为60°,在第四象限轨迹所对应的圆心角也为60°,在一个周期内,粒子在第一象限运动的时间为t1=T=;同理,在第四象限运动的时间为t2=T'=;完成一次周期性运动的时间为t1+t2=,故B正确。由r=,知粒子做圆周运动的半径与B成反比,则粒子在x轴上方和下方两磁场中运动的半径之比为1∶2,故C正确。根据几何知识得:粒子第二次射入x轴上方磁场时,沿x轴前进的距离为x=r+2r=3r,故D正确。 10、如图甲所示,圆形线圈P静止在水平桌面上,其正上方悬挂一相同的线圈Q,P和Q共轴,Q中通有变化的电流,电流变化的规律如图乙所示,P所受的重力为G,桌面对P的支持力为N,则(  ) A.t1时刻,N>G B.t2时刻,N>G C.t3时刻,NG,A正确;t2时刻Q电流减小,其磁场减弱,则穿过P的磁通量变小,由楞次定律可知P将阻碍磁通量的变小,则P有向上运动的趋势,对桌面的压力减小,NG,C错误;t4时刻电流减小,故N 展开
  • 资料类型: 试卷 试卷 试卷 试卷 试卷 试卷
  • 资料版本:人教版(新课程标准)
  • 适用地区:全国
  • 文件大小:3.6M
物理精优课

下载与使用帮助