[ID:3-6495379] 高中数学第一章集合与函数概念1.3.1函数概念及性质备课资料素材新人教A版必 ...
当前位置: 数学/高中数学/人教新课标A版/必修1/第一章 集合与函数概念/1.3 函数的基本性质/1.3.1单调性与最大(小)值
资料简介:
==================资料简介======================
1.3.1 函数概念及性质
备课资料
知识点总结——函数概念及性质
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:分式的分母不等于零; 偶次方根的被开方数不小于零;对数式的真数必须大于零;如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合;实际问题中的函数的定义域还要保证实际问题有意义.求出不等式组的解集即为函数的定义域.
2.构成函数的三要素:定义域、对应关系和值域.
构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数);两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备).
函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域;应熟悉掌握一次函数、二次函数,它是求解复杂函数值域的基础;求函数值域的常用方法有:直接法、换元法、配方法、判别式法、单调性法等.
3.函数图象知识归纳
定义:在平面直角坐标系中,以函数 y=f(x) (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x)(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上,即记为C={ P(x,y) | y= f(x), x∈A}.图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行于y轴的直线最多只有一个交点的若干条曲线或离散点组成.
================================================
压缩包内容:
高中数学第一章集合与函数概念1.3.1函数概念及性质备课资料素材新人教a版必修1.doc
展开
数学精优课

下载与使用帮助