[ID:3-4268840]2018年泰安中考数学总复习专题二:阅读理解问题
当前位置: 数学/初中数学/中考专区/三轮冲刺
资料简介:
==================资料简介======================
聚焦泰安
类型一 新概念学习型
是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.
 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=.
(1)如果一个正整数m是另一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(3)在(2)所得“吉祥数”中,求F(t)的最大值.
【分析】 (1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.
================================================
压缩包内容:
2018泰安中考数学总复习专题二:阅读理解问题.doc
展开
  • 教案类型:三轮冲刺/综合资料
  • 资料版本:通用
  • 适用地区:山东省泰安市
  • 文件大小:315.97KB
数学精优课

下载与使用帮助