[ID:3-6048937] 压轴题新定义题型精选题专练(无答案)
当前位置: 数学/初中数学/中考专区/二轮专题
资料简介:
压轴题·新定义题型精选题专练 一、中考专题诠释 所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力. 二、解题策略和解法精讲 解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;?归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题. 中考题回顾 回顾1.(10分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形. (1)将?ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段   ,   ;S矩形AEFG:S?ABCD=   . (2)?ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长; (3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长. 回顾2.(本题10分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上.把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点. (1)当m=0时,求该抛物线下方(包括边界)的好点个数. (2)当m=3时,求该抛物线上的好点坐标. (3)若点P在正方形OABC内部,该抛物线下方(包括边界) 恰好存在8个好点,求m的取值范围. 草稿区域 解题思路: 解题感悟: 常规训练题·本题入库精选题库 例1.如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足,我们就把∠APB叫做∠MON的智慧角。 (1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°。 求证:∠APB是∠MON的智慧角; (2)如图1,已知∠MON=(0°<<90°),OP=2,若∠APB是∠MON的智慧角,连结AB,用含的式子分别表示∠APB的度数和△AOB的面积; (3)如图3,C是函数图象上的一个动点,过点C的直线CD分别交轴和轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标。 【常规训练题2】 例2.概念:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点. (1)根据上述概念,当m=2,n=2时,如图1,线段BC与线段OA的距离是 2 ;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB长)为 ; (2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式. (3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M, ①求出点M随线段BC运动所围成的封闭图形的周长; ②点D的坐标为(0,2),m≥0,n≥0,作MN⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由. 草稿区域 解题思路: 解题感悟: 【常规训练题3】 例3.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4. 问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部. (1)直接写出点D(m,n)所有的特征线; (2)若点D有一条特征线是y=x+1,求此抛物线的解析式; (3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上? 草稿区域 解题思路: 解题感悟:
展开
  • 资料类型: 学案
  • 资料版本:通用
  • 适用地区:全国
  • 文件大小:129.33KB
数学精优课

下载与使用帮助