[ID:3-6042208] 2019年全国各地中考数学试题分类汇编(第一期) 专题37 操作探究(含解析)
当前位置: 数学/初中数学/中考专区/二轮专题
资料简介:
操作探究 一.选择题 1. (2019?湖南邵阳?3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于(  ) A.120° B.108° C.72° D.36° 【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC=∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°. 【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°, ∴∠C=90°﹣∠B=54°. ∵AD是斜边BC上的中线, ∴AD=BD=CD, ∴∠BAD=∠B=36°,∠DAC=∠C=54°, ∴∠ADC=180°﹣∠DAC﹣∠C=72°. ∵将△ACD沿AD对折,使点C落在点F处, ∴∠ADF=∠ADC=72°, ∴∠BED=∠BAD+∠ADF=36°+72°=108°. 故选:B. 【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质. 2. (2019?浙江金华?3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则 的值是(??? ) A.??????????????????????????????????B.?-1?????????? ?????????????C.?????????? ??????????D.? 【答案】 A 【考点】剪纸问题 【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图, 依题可得: NM= a,FM=GN= , ∴NO= = , ∴GO= = , ∵正方形EFGH与五边形MCNGF的面积相等, ∴x2= + a2 , ∴a= x, ∴ = = . 故答案为:A. 【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM= a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2 , 解之可得a= x,由 ,将a= x代入即可得出答案. 3. 3 (2019甘肃省陇南市)(3分)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为(  ) A.3 B.4 C.5 D.6 【分析】当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解. 【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3. ∴AB?=3,即AB?BC=12. 当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7, ∴AB+BC=7. 则BC=7﹣AB,代入AB?BC=12,得AB2﹣7AB+12=0,解得AB=4或3, 因为AB<AD,即AB<BC, 所以AB=3,BC=4. 故选:B. 【点评】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值. 二.填空题 1. . (2019?江苏苏州?3分)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图①是由边长的正方形薄板分成7块制作成的“七巧板”图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______(结果保留根号) 【解答】 2.(2019?浙江衢州?6分)如图,在4×4的方格子中,△ABC的三个顶点都在格点上, (1)在图1中画出线段CD,使CD⊥CB,其中D是格点, (2)在图2中画出平行四边形ABEC,其中E是格点. 【答案】 (1)解:如图, 线段CD就是所求作的图形. (2)解:如图, ABEC就是所求作的图形 【考点】作图—复杂作图 【解析】【分析】(1)过点C作CD⊥CB,且点D是格点即可.(2)作一个△BEC与△BAC全等即可得出图形. 3(2019?湖南湘西州?4分)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为 3 .(用科学计算器计算或笔算). 【分析】当输入x的值为16时,=4,4÷2=2,2+1=3. 【解答】解:解:由题图可得代数式为. 当x=16时,原式=÷2+1=4÷2+1=2+1=3. 故答案为:3 【点评】此题考查了代数式求值,此类题要能正确表示出代数式,然后代值计算,解答本题的关键就是弄清楚题目给出的计算程序. 三.解答题 1. (2019?湖南岳阳?10分)操作体验:如图,在矩形ABCD中,点E.F分别在边AD.BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一以PM、PN为邻边构造平行四边形PMQN. (1)如图动点(不与E.F重合),过点P分别作直线BE.BF的垂线,垂足分别为点M和N,1,求证:BE=BF; (2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长; (3)类比探究:若DE=a,CF=b. ①如图3,当点P在线段EF的延长线上运动时,试用含A.b的式子表示QM与QN之间的数量关系,并证明; ②如图4,当点P在线段FE的延长线上运动时,请直接用含A.b的式子表示QM与QN之间的数量关系.(不要求写证明过程) 【分析】(1)证明∠BEF=∠BFE即可解决问题(也可以利用全等三角形的性质解决问题即可). (2)如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形.利用面积法证明PM+PN=EH,利用勾股定理求出AB即可解决问题. (3)①如图3中,连接BP,作EH⊥BC于H.由S△EBP﹣S△BFP=S△EBF,可得BE?PM﹣?BF?PN=?BF?EH,由BE=BF,推出PM﹣PN=EH=,由此即可解决问题. ②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=. 【解答】(1)证明:如图1中, ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠DEF=∠EFB, 由翻折可知:∠DEF=∠BEF, ∴∠BEF=∠EFB, ∴BE=BF. (2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB. ∵DE=EB=BF=5,CF=2, ∴AD=BC=7,AE=2, 在Rt△ABE中,∵∠A=90°,BE=5,AE=2, ∴AB==, ∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF, ∴?BF?EH=?BE?PM+?BF?PN, ∵BE=BF, ∴PM+PN=EH=, ∵四边形PMQN是平行四边形, ∴四边形PMQN的周长=2(PM+PN)=2. (3)①证明:如图3中,连接BP,作EH⊥BC于H. ∵ED=EB=BF=a,CF=b, ∴AD=BC=a+b, ∴AE=AD﹣DE=b, ∴EH=AB=, ∵S△EBP﹣S△BFP=S△EBF, ∴BE?PM﹣?BF?PN=?BF?EH, ∵BE=BF, ∴PM﹣PN=EH=, ∵四边形PMQN是平行四边形, ∴QN﹣QM=(PM﹣PN)=. ②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=. 【点评】本题属于四边形综合题,考查了矩形的性质和判定,翻折变换,等腰三角形的性质,平行四边形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,学会利用面积法证明线段之间的关系,属于中考压轴题. 2. (2019?湖南邵阳?8分)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F. (1)求由弧EF及线段FC.CB.BE围成图形(图中阴影部分)的面积; (2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h. 【分析】(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6,然后利用扇形的面积公式,利用由弧EF及线段FC.CB.BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF进行计算; (2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=2,然后利用勾股定理计算这个圆锥的高h. 【解答】解:∵在等腰△ABC中,∠BAC=120°, ∴∠B=30°, ∵AD是∠BAC的角平分线, ∴AD⊥BC,BD=CD, ∴BD=AD=6, ∴BC=2BD=12, ∴由弧EF及线段FC.CB.BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π; (2)设圆锥的底面圆的半径为r, 根据题意得2πr=,解得r=2, 这个圆锥的高h==4. 【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式. 3. (2019?南京?9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E.F在边AB上,点G在边BC上. 小明的作法 1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G. 2.以点D为圆心,DG长为半径画弧,交AB于点E. 3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形. (1)证明小明所作的四边形DEFG是菱形. (2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围. 【分析】(1)根据邻边相等的四边形是菱形证明即可. (2)求出几种特殊位置的CD的值判断即可. 【解答】(1)证明:∵DE=DG,EF=DE, ∴DG=EF, ∵DG∥EF, ∴四边形DEFG是平行四边形, ∵DG=DE, ∴四边形DEFG是菱形. (2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x. 在Rt△ABC中,∵∠C=90°,AC=3,BC=4, ∴AB==5, 则CD=x,AD=x, ∵AD+CD=AC, ∴+x=3, ∴x=, ∴CD=x=, 观察图象可知:0≤CD<时,菱形的个数为0. 如图2中,当四边形DAEG是菱形时,设菱形的边长为m. ∵DG∥AB, ∴=, ∴=, 解得m=, ∴CD=3﹣=, 如图3中,当四边形DEBG是菱形时,设菱形的边长为n. ∵DG∥AB, ∴=, ∴=, ∴n=, ∴CG=4﹣=, ∴CD==, 观察图象可知:当0≤CD<或<CD≤时,菱形的个数为0,当CD=或<CD≤时,菱形的个数为1,当<CD≤时,菱形的个数为2. 【点评】本题考查相似三角形的判定和性质,菱形的判定和性质,作图﹣复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度. 4.((2019,山西,11分)综合与实践 动手操作: 第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2. 第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3 第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕. 问题解决: (1)在图5中,∠BEC的度数是 ,的值是 ; (2)在图5中,请判断四边形EMGF的形状,并说明理由; (3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: . 【解析】解:(1)67.5° (2)四边形EMGF是矩形 理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90° 由折叠可知:∠1=∠2=∠3=∠4,CM=CG, ∠BEC=∠NEC=∠NFC=∠DFC=67.5° 由折叠可知:MH、GH分别垂直平分EC,FC, ∴MC=ME,GC=GF ∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF∠GFE=90° ∵∠MCG=90°,CM=CG.∴∠CMG=45° 又∵∠BME=∠1+∠5=45°,∴∠EMG=180°-∠CMG-∠BME=90° ∴四边形EMGF是矩形. (1)菱形FGCH或菱形EMCH(一个即可),如下图所示 第 1 页 共 12 页
展开
  • 资料类型: 试卷
  • 资料版本:通用
  • 适用地区:全国
  • 文件大小:596.5KB
数学精优课

下载与使用帮助