[ID:3-4619462]2018年高中数学复习课(课件学案)(打包6套)苏教版必修5
当前位置: 数学/高中数学/苏教版/必修5/本册综合
资料简介:
==================资料简介======================
2018年高中数学复习课二数列课件苏教版必修5:31张PPT
2018年高中数学复习课三不等式课件苏教版必修5:24张PPT
2018年高中数学复习课一解三角形课件苏教版必修5:25张PPT
复习课(一) 解三角形

利用正、余弦定理解三角形

对于解三角形的考查,命题多利用正、余弦定理,三角形内角和定理来求边和角,其中以求边或角的取值范围为主,以解三角形与三角函数的结合为命题热点,试题多以大题的形式出现,难度中等.
解三角形的常见类型及方法
(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.
(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A+B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.
(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.
(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.
[典例] 设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2bsin A.
(1)求B的大小;
(2)若a=3,c=5,求b.
[解] (1)由a=2bsin A,
根据正弦定理得sin A=2sin Bsin A,所以sin B=,
由于△ABC是锐角三角形,所以B=.
(2)根据余弦定理,得
b2=a2+c2-2accos B=27+25-45=7,
所以b=.
[类题通法]
利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.
================================================
压缩包内容:
2018年高中数学复习课一解三角形学案苏教版必修5.doc
2018年高中数学复习课一解三角形课件苏教版必修5.ppt
2018年高中数学复习课三不等式学案苏教版必修5.doc
20
展开
  • 课件类型:期末复习课件
  • 资料版本:苏教版
  • 适用地区:全国
  • 文件大小:2.17M
数学精优课

下载与使用帮助