[ID:6-6055688] 高二备战2020年高考物理复习力学大汇总:匀变速直线运动“九大题型与几大方 ...
当前位置: 物理/高中物理/高考专区/二轮专题
资料简介:
(共68张PPT)
匀变速直线运动九大题型与六大方法


第一部分 基础 知识快速回顾
知识点1 匀变速直线运动及其公式 Ⅱ
1.定义和分类
(1)匀变速直线运动:物体在一条直线上运动,且 不变.
(2)匀加速直线运动:a与v .
(3)匀减速直线运动:a与v .
加速度
同向
反向
2.三个基本公式
(1)速度公式: .
(2)位移公式: .
(3)位移速度关系式: .
v=v0+at
(2)任意两个连续相等的时间间隔T内的位移之差为一恒量,即:Δx=x2-x1=x3-x2=…=xn-xn-1= .
可以推广到xm-xn=(m-n)aT2.
中间时刻
一半
aT2
4.初速度为零的匀变速直线运动的四个推论
(1)1T末、2T末、3T末……瞬时速度的比为:
v1∶v2∶v3∶…∶vn= .
(2)1T内、2T内、3T内……位移的比为:
x1∶x2∶x3∶…∶xn= .
(3)第一个T内、第二个T内、第三个T内……位移的比为:
xⅠ∶xⅡ∶xⅢ∶…∶xn= .
(4)从静止开始通过连续相等的位移所用时间的比为:
t1∶t2∶t3∶…∶tn=
_____________________________________.
1∶2∶3∶…∶n
12∶22∶32∶…∶n2
1∶3∶5∶…∶(2n-1)
知识点2 自由落体运动和竖直上抛运动
1. 自由落体运动
(1)条件:物体受 ,从 开始下落.
(2)运动性质:初速度v0=0,加速度为重力加速度g的______________运动.
(3)基本规律
①速度公式v= .
②位移公式h= .
③速度位移关系式:v2= .
重力
静止
匀加速直线
gt
2gh
2. 竖直上抛运动规律
(1)运动特点:加速度为g,上升阶段做 运动,下降阶段做 运动.
匀减速直线
自由落体
(2)基本规律
①速度公式:v= .
②位移公式:h= .
v0-gt
-2gh
④上升的最大高度:H= .
⑤上升到最高点所用时间:t= .
第二部分、重点题型一遍过

题型与方法并重、一题一方法、一例一总结

题型一、研究过程的合理选择、基本公式的准确应用
例1、(2018年内蒙古包头市一模试题)如图所示,光滑斜面AE被分成四个相等的部分,一物体从A点由静止释放,下列结论中正确的是( )

A.物体到达各点的速率:

B.物体到达各点所经历的时间比为:

C.物体从A到E的平均速度:

D.物体通过每一部分时,其速度增量是相等的。
答案:ABC
方法总结:


1、本题的关键在于抓住物体做出速度为零的匀加速运动这个特点,合理选择研究过程,本题中在研究过程的选择中:每一个过程都以A作为过程的起始点就是这个目的;


2、根据问题和条件不同而选择恰当的公式;
关键点提示:做出物体的运动草图,合理选择研究过程,结合速位公式与平均速度公式进行处理;
方法总结:

如果研究的问题只有文字描述,没有实物图,又不是单一运动过程,应该先画出物体运动的实物图,再根据物体的运动特点选择合理的研究过程,要根据,题干所给的条件不同而选择合适的运动学公式。
答案:(1)5 m/s (2)12 m
题型二、比例法处理匀变速直线运动的问题
例3、一物体做初速度为0的匀加速直线运动,从开始运动起,物体经过连续的三段位移所用的时间之比是1∶2∶3,求这三段位移大小之比.
【解析】:
若根据初速度为0的匀加速直线运动中,连续相等的时间间隔内位移之比为连续奇数之比,解起来更方便.

若将时间等分为(1+2+3)=6(段)

则x1∶x2∶x3∶x4∶x5∶x6=1∶3∶5∶7∶9∶11

故xⅠ∶xⅡ∶xⅢ=1∶(3+5)∶(7+9+11)=1∶8∶27

【答案】 1∶8∶27

例4、某同学站在一平房边观察从屋檐边滴下的水滴,发现屋檐边滴水是等时的,且第5滴正欲滴下时,第1滴刚好到达地面;第2滴和第3滴水刚好位于窗户的下沿和上沿,他测得窗户上、下沿的高度差为1 m,由此求屋檐离地面的高度.

思维提示:画出物体运动的实物图象,结合比例法求解
答案:3.2 m
方法总结:
对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.

题型三、逆向思维在处理运动学问题中的典型应用
例5、厚度相同的三块木块固定在水平面上,一颗子弹自左向右以某一速度水平射入,子弹在木块内的运动可看成匀减速运动,当子弹穿透第三块木块时速度恰好为零,则子弹先后射入三木块前的速度大小之比为___________

关键点提示:将子弹的运动逆着看可以看成是初速度为0的匀加速直线运动,充分利用初速度为0 的运动特点,结合速位公式进行求解;
答案:
例6、一物体以某一初速度在粗糙的平面上做匀减速直线运动,最后停下来.若此物体在最初5 s经过的路程与最后5 s经过的路程之比为11∶5,则此物体总共运动了多少时间?

答案:8 s
方法总结:
逆向思维法把物体所发生的物理过程逆过来加以分析的方法叫逆向思维法.例如:把末速度为0的匀减速直线运动转换为初速度为0的匀加速直线运动处理.使用时要注意:要使逆过来后的运动与逆过来前的运动位移、速度、时间具有对称性,必须保证逆过来前后物体的加速度大小、方向均相同.

题型四、巧用平均速度法解决匀变速直线运动的问题
例7、如图所示,一长为l的长方形木块在水平面上以加速度a做匀加速直线运动.先后经过1、2两点,1、2之间有一定的距离,木块通过1、2两点所用时间分别为t1和t2.求:
(1)木块经过位置1时的平均速度大小;
(2)木块前端P在1、2之间运动所需时间.


方法总结
平均速度的计算在高考题中经常以某一选项的形式在选择题中出现,往往与v-t图象等知识联系,在求解平均速度时一定要注意以下几点:

(1)平均速度与时间间隔有关,不同时间间隔内的平均速度一般不同.所以,在求平均速度时要明确是哪段时间内或哪段位移上的平均速度.

(2)当质点在各段时间内以不同速度运动时,全程的平均速度一般不等于各段时间速度的算术平均值.

(3)平均速度的方向与位移的方向相同,与瞬时速度的方向无必然联系.
例8、作匀加速直线运动的物体先后经过A、B、C三点,在AB段物体的平均速度为3 m/s,在BC段平均速度为6 m/s,AB=BC,则物体在B点的速度为
A.4 m/s        B.4.5 m/s
C.5 m/s D.5.5 m/s
关键点提示:作出物体运动的实物图,合理选择研究过程,结合平均速度法处理。
答案:C
关键点提示:作出物体运动的实物图,合理选择研究过程,结合平均速度法处理。
方法总结:中间时刻速度法
利用“匀变速直线运功,任一时间t中间时刻的瞬时速度等于这段时间内的平均速度”,有些题目应用此公式可以避免常规解法中用位移公式列出的含有的复杂式子,从而简化解题过程,提高解题速度。
题型五、思维转化法在处理运动学问题中的典型应用
例10、从斜面上某一位置,每隔0.1 s释放一个小球,在连续释放几颗小球后,对在斜面上滚动的小球拍下照片,如右图所示,测得xAB=15 cm,xBC=20 cm,求:
(1)小球的加速度;
(2)拍摄时B球的速度;
(3)拍摄时xCD的大小;
(4)A球上方滚动的小球还有几颗.
答案:(1)5 m/s2 (2)1.75 m/s (3)0.25 m (4)2颗
题型六、图像法在处理运动学问题中的典型应用
例11、某汽车沿一直线运动,在t时间内通过的位移为L,在处速度为v1,在处速度为v2,则
A.匀加速运动,v1>v2 B.匀减速运动,v1<v2
C.匀加速运动,v1<v2 D.匀减速运动,v1>v2
例12、静止在光滑水平面上的木块,被一颗子弹沿水平方向击穿,若子弹击穿木块的过程中子弹受到木块的阻力大小恒定,则当子弹入射速度增大时,下列说法正确的是(  )
A.木块获得的速度变大
B.木块获得的速度变小
C.子弹穿过木块的时间变长
D.子弹穿过木块的时间变短
【解析】 子弹穿透木块过程中,子弹做匀减速运动,木块做匀加速运动,画出如图所示的v-t图象,图中实线OA、v0B分别表示木块、子弹的速度图象,而图中梯形OABv0的面积为子弹相对木块的位移,即木块长度L.当子弹入射速度增大变为v0′时,子弹、木块的运动图象便如图中虚线v0′B′、OA′所示,梯形OA′B′v0′的面积仍等于子弹相对木块的位移L,由图线可知,子弹入射速度越大,木块获得的速度越小,作用时间越短,B、D正确.答案 BD
方法总结:
图象法是物理学中处理问题的一种重要方法.由于图象能更直观地表示出物理过程和各物理量之间的相互关系,因而在解题过程中被广泛应用.在运动学中,主要是指v-t图象和x-t图象.
应用图象,可把较复杂的问题转变为较为简单的数学问题解决,尤其是用图象定性分析,可避开复杂的计算,快速得出答案.
例13、汽车以20 m/s的速度在平直公路上行驶,急刹车时的加速度大小为5 m/s2,则自驾驶员急踩刹车开始,2 s与5 s时汽车的位移之比为(  )
A.5∶4       B.4∶5
C.3∶4 D.4∶3
题型七、刹车类截止性现象
关键点提示:注意要先判断汽车何时停止,是处理本题的关键。
答案:C
题型八、竖直上抛类问题的处理方法
例14、气球以10 m/s的速度匀速竖直上升,从气球上掉下一个物体,经17 s到达地面.求物体刚脱离气球时气球的高度.(g=10 m/s2)
 
关键点提示:从上升的气球上落下的物体,由于有向上的初速度,所以要做竖直上抛运动,不会立即下落.
(2)画出物体运动过程分析图.
提示:如下图

法一:(全程法)可将物体的运动过程视为匀变速直线运动.根据题意画出运动草图如图(甲)所示.
规定向下方向为正,则v0=-10 m/s,

法二:(分段法)如图(乙)将物体的运动过程分为A→B和B→D两段来处理.A→B为竖直上抛运动,B→D为自由落体运动.
抛体类问题方法总结一:
研究竖直上抛运动的两种方法
(1)分段法:把竖直上抛运动分成上升阶段的匀减速直线运动和下落阶段的自由落体运动,下降过程是上升过程的逆过程.
(2)全程法:从全过程看,加速度方向始终与初速度方向相反,故也可以把竖直上抛运动看成一个匀变速直线运动.两种方法应用时都要注意速度和位移的正负.

例15、王兵同学利用数码相机连拍功能(此相机每秒连拍10张),记录下北京奥运会跳水比赛中小将陈若琳和王鑫在10 m跳台跳水的全过程.所拍摄的第一张恰为她们起跳的瞬间,第四张如图甲所示,王兵同学认为这是她们在最高点;第十九张如图乙所示,她们正好身体竖直双手触及水面.设起跳时她们的重心离台面的距离和触水时她们的重心离水面的距离相等.由以上材料(g取10 m/s2):
(1)估算陈若琳的起跳速度;
(2)分析第四张照片是在最高点吗?如果不是,此时重心是处于上升还是下降阶段?

答案:(1)3.4 m/s (2)不是 上升阶段
抛体类问题方法总结二
①时间对称性:物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理有tAB=tBA.
②速度对称性:物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.
③多解性:在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下落阶段,因此这类问题可能造成时间多解或者速度多解,也可能造成路程多解.

题型九、多种方法处理匀变速直线类问题


重要方法总结:

解决匀变速直线运动问题时的三点提醒
(1)养成根据题意画出物体运动示意图的习惯,尤其是较复杂的运动,画出示意图可以使运动过程直观、清晰.
(2)匀变速直线运动常可一题多解,解题时要灵活选择合适的公式,筛选最简捷的方法.
(3)列运动学方程时,方程式中每一个物理量均对应同一运动过程.

例17、一个做匀加速直线运动的质点,在开始连续相等的两个时间间隔内,通过的位移分别是60 m和84 m,每一个时间间隔为2 s,求质点的初速度和加速度.

答案:24 m/s 6 m/s2
方法总结:处理匀变速直线运动问题的基本思维过程
(1)明确所研究的运动过程是否属于匀变速直线运动.
(2)确定题目属于哪一类题型.
(3)结合所学题型的相应解题方法,灵活选择公式列方程求解.
展开
  • 资料类型:课件
  • 资料版本:人教版(新课程标准)
  • 适用地区:全国
  • 文件大小:1.38M
物理精优课

下载与使用帮助