[ID:3-6487087] 高中数学选修2-3第2章 概率 章末总结
当前位置: 数学/高中数学/人教新课标B版/选修2-3/第二章 概率/本章综合与测试
资料简介:
==================资料简介======================
章末总结



知识点一 条件概率
在计算条件概率时,必须搞清楚欲求的条件概率是在哪一个事件发生的条件下的概率,从而选择恰当的条件概率公式,分别求出相应事件的概率进行计算.其中特别注意事件AB的概率的求法,它是指事件A和B同时发生的概率,应结合题目的条件进行计算.如果给出的问题涉及古典概型,那么也可以直接用古典概型的方法进行条件概率的求解.
例1 坛子里放着7个相同大小、相同形状的鸭蛋,其中有4个是绿皮的,3个是白皮的.如果不放回地依次拿出2个鸭蛋,求:
(1)第1次拿出绿皮鸭蛋的概率;
(2)第1次和第2次都拿到绿皮鸭蛋的概率;
(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.
知识点二 独立事件的概率
1.互斥事件、相互独立事件一般综合在一起进行考查,解答此类问题时应分清事件间的内部联系,在此基础上运用相应公式求解.
2.特别注意以下两公式的使用前提:
(1)若A,B互斥,则P(A+B)=P(A)+P(B),反之不成立.
(2)若A,B相互独立,则P(AB)=P(A)P(B),反之成立.
例2 已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.5,老二为0.45,老三为0.4,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?
知识点三 n次独立重复试验与二项分布
事件在n次独立重复试验中恰好发生k次的概率计算及二项分布的应用是高考重点考查的内容,在解答题中多与随机变量的分布列、均值综合考查.解题时应注意:恰有k次发生和指定k次发生的差异,对独立重复试验来说,前者的概率为Cpk(1-p)n-k,后者的概率为pk(1-p)n-k.
例3 某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:
(1)该公司的资助总额为零的概率;
(2)该公司的资助总额超过15万元的概率.
知识点四 期望与方差
求离散型随机变量的期望、方差,首先要明确概率分布,最好确定随机变量概率分布的模型,这样就可以直接运用公式进行计算.
例4 某单位选派甲、乙、丙三人组队参加“2010上海世博会知识竞赛”,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是,甲、丙两人都答错的概率是,乙、丙两人都答对的概率是,规定每队只要有一人答对此题则该队答对此题.
================================================
压缩包内容:
第2章 章末总结试题.docx
展开
  • 资料类型:教案
  • 资料版本:人教新课标B版
  • 适用地区:全国
  • 文件大小:116.4KB
数学精优课

下载与使用帮助