[ID:3-6465534] 人教版数学必修1 1.3.1 函数的单调性与最大(小)值教学设计
当前位置: 数学/高中数学/人教新课标A版/必修1/第一章 集合与函数概念/1.3 函数的基本性质/1.3.1单调性与最大(小)值
资料简介:
==================资料简介======================
1.3.1 函数的单调性与奇偶性
一、教学目标
1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。
2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性与奇偶性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。
3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。
在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下:
教学重点:函数的单调性与奇偶性的判断与证明;
教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性与奇偶性。
二、教材内容简析:
本节主要内容如下:
(1)单调性的相关定义:一般地,设函数的定义域为I,区间AI:如果对于区间A内的任意两个值,当时都有,那么就说在区间A上是增加(减少)的。此时,A是单调递增(递减)区间。
注:关键词:“区间AI:”、“任意”、“都”。区间AI表明判断函数单调性首先判断函数的定义域,“任意”表明不可以用两个特定的值来确定函数是增函数还是减函数,但是可以用来否定函数是增函数或者否定函数是减函数,“都”表示单调区间中的每一个值无一例外。
如果函数在定义域的某个子集上是增加或减少的,那么就称这个函数在这个子集上具有单调性。如果函数在定义域是增加或减少的,那么就分别称这个函数为增函数或减函数,统称为单调函数。

三、教学过程设计:
教学

环节
教学时间
教学目的
教学呈现
设计意图
教学

方法
说明



导入
新课




1






利用生活中的实例引出课 题
教师引言:

日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从阶梯教室后向前走,逐步下降,上下楼梯也是一样。

(而后将其引申到函数中图像的上升与下降,接着板书课题:函数的单调性)
明确学习内容且向学生渗透研究函数问题的一般方法。
================================================
压缩包内容:
人教版数学必修1 1.3.1 函数的单调性与最大(小)值教学设计.doc
展开
数学精优课

下载与使用帮助