[ID:3-6751050] 2020中考数学复习专题:反比例函数综合应用题(无答案)
当前位置: 数学/初中数学/中考专区/二轮专题
资料简介:
==================资料简介======================
九年级数学反比例函数综合应用题
1.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=-(x<0)交于点P(-1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?


2.如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,-2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.
3.如图,直线y=-x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1). (1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值; ②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.
4.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
5.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-1,0),与反比例函数y=在第一象限内的图象交于点B(,n).连接OB,若S△AOB=1. (1)求反比例函数与一次函数的关系式; (2)直接写出不等式组的解集.
6.已知双曲线y=和直线AB的图象交于点A(-3,4),AC⊥x轴于点C.(1)求双曲线y=的解析式;(2)当直线AB绕着点A转动时,与x轴的交点为B(a,0),并与双曲线y=另一支还有一个交点的情形下,求△ABC的面积S与a之间的函数关系式,并指出a的取值范围.
7.已知直线OA:y1=k1x与双曲线y2=交于第一象限于点A(2,2) (1)求直线和双曲线的解析式; (2)将直线OA沿y轴向下平移,交y轴于点C,交双曲线于点B,直线BA交y轴于点D,若O恰好是CD的中点,求平移后直线BC的解析式.
================================================
压缩包内容:
九年级数学反比例函数综合应用题.doc
展开
数学精优课

下载与使用帮助