[ID:3-4373790] [精]备考2018中考数学高频考点剖析专题20 平面几何之平行四边形问题
当前位置: 数学/初中数学/中考专区/二轮专题
资料简介:
==================资料简介======================
备考2018中考数学高频考点剖析
专题二十 平面几何之和平行四边形问题
考点扫描☆聚焦中考
平行四边形问题,是每年中考的必考内容之一,考查的知识点包括平行四边形的性质和平行四边形的判定两方面,总体来看,难度系数低,以选择填空为主,也有少量的解析题。解析题主要以简单的证明为主。结合近几年来,特别是2017年全国各地中考的实例,我们从三个方面进行平行四边形问题的探讨:
(1)平行四边形的性质;
(2)平行四边形的判定;
(3)平行四边形的综合应用.
考点剖析☆典型例题
例1如图,在ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则ABCD的周长为(  )

A.6 B.12 C.18 D.24
【考点】L5:平行四边形的性质;KG:线段垂直平分线的性质.
【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.
【解答】解:∵四边形ABCD是平行四边形,
∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,
∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,
∴ABCD的周长=2×6=12;
故选:B.
例2(2017广西河池)如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是(  )
================================================
压缩包内容:
备考2018中考数学高频考点剖析专题20 平面几何之平行四边形问题
专题20 平面几何之平行四边形问题-原卷.doc
专题20 平面几何之平行四边形问题-解析卷.doc
展开
  • 资料类型:学案
  • 资料版本:人教版
  • 适用地区:全国
  • 文件大小:3.48M
数学精优课

下载与使用帮助