[ID:3-6672984] 2020届数学(文)二轮复习教案:第2部分 专题6 第3讲 导数的综合应用
当前位置: 数学/高中数学/高考专区/二轮专题
资料简介:
==================资料简介======================
第3讲 导数的综合应用

 利用导数证明不等式(5年3考)

[高考解读] 利用导数证明不等式是每年高考的热点,主要考查“辅助函数法”证明不等式,难度较大.
(2018·全国卷Ⅲ)已知函数f(x)=.
(1)求曲线y=f(x)在点(0,-1)处的切线方程;
(2)证明:当a≥1时,f(x)+e≥0.
切入点:求函数f(x)的导数.
关键点:正确构造函数, 转化为函数的最值问题解决.
[解] (1)f′(x)=,f′(0)=2.
因此曲线y=f(x)在(0,-1)处的切线方程是2x-y-1=0.
(2)证明:当a≥1时,f(x)+e≥(x2+x-1+ex+1)e-x.
令g(x)=x2+x-1+ex+1,则g′(x)=2x+1+ex+1.
当x<-1时,g′(x)<0,g(x)单调递减;当x>-1时,g′(x)>0,g(x)单调递增.所以g(x)≥g(-1)=0.
因此f(x)+e≥0.
[教师备选题]
1.(2016·全国卷Ⅲ)设函数f(x)=ln x-x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1<<x;
(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.
[解] (1)由题设知,f(x)的定义域为(0,+∞),f′(x)=-1,令f′(x)=0,解得x=1.
当0<x<1时,f′(x)>0,f(x)单调递增;
当x>1时,f′(x)<0,f(x)单调递减.
(2)由(1)知,f(x)在x=1处取得最大值,
最大值为f(1)=0.
所以当x≠1时,ln x<x-1.
故当x∈(1,+∞)时,ln x<x-1,ln<-1,
即1<<x.
(3)证明:由题设c>1,设g(x)=1+(c-1)x-cx,
则g′(x)=c-1-cxln c.
令g′(x)=0,解得x0=.
当x<x0时,g′(x)>0,g(x)单调递增;
当x>x0时,g′(x)<0,g(x)单调递减.
由(2)知1<<c,故0<x0<1.
又g(0)=g(1)=0,故当0<x<1时,g(x)>0.
所以当x∈(0,1)时,1+(c-1)x>cx.
2.(2017·全国卷Ⅲ)已知函数f(x)=ln x+ax2+(2a+1)x.
(1)讨论f(x)的单调性;
(2)当a<0时,证明f(x)≤--2.
================================================
压缩包内容:
2020届数学(文)二轮复习教案:第2部分 专题6 第3讲 导数的综合应用.doc
展开
  • 资料类型:教案
  • 资料版本:人教新课标A版
  • 适用地区:全国
  • 文件大小:336.55KB
数学精优课

下载与使用帮助