[ID:3-6305599] [精]【备考2020】高考小题专练之概率问题 解析版
当前位置: 数学/高中数学/高考专区/二轮专题
资料简介:
中小学教育资源及组卷应用平台 4高考小题专练之概率问题 1:5个射击选手击中目标的概率都是,若这5个选手同时射同一个目标,射击三次则至少有一次五人全部集中目标的概率是( ) A. B. C. D. 思路:所求中有“至少一次”,且若正面考虑问题所涉及的情况较多。所以考虑从问题的对立面入手,设所求事件为事件,则为“射击三次没有一次五人均命中目标”,考虑射击一次五人没有全命中目标的概率为,所以 ,从而可得 答案:C 2.甲,乙,丙三人独立的去译一个密码,分别译出的概率为,则此密码能译出概率是( ) A. B. C. D. 思路:若要译出密码,则至少一个人译出即可。设事件为“密码译出”,正面分析问题情况较多,所以考虑利用对立面,为“没有人译出密码”,则 ,从而 答案:C 3.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( ) A. B. C. D. 【解析】令代入得,即二项式的展开式的各项系数之和为.从0,1,2,3,4,5中任取两个不同的数字方法有:共种,其中和为的有共两种,所以恰好使该图形为“和谐图形”的概率为,故选B. 4.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”. 现有4 名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游, 假设每名同学均从这四个地方中任意选取一个去旅游, 则恰有一个地方未被选中的概率为( ) A. B. C. D. 【解析】名同学去旅游的所有情况有:种 恰有一个地方未被选中共有:种情况 恰有一个地方未被选中的概率: 5.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮,假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率是_________ 思路:因为选手回答4个问题就晋级下一轮,所以说明后两个回答结果正确,且第二次回答错误(否则第二次与第三次连续正确,就直接晋级了),第一次回答正确错误均可。所以 答案: 6.掷3颗骰子,已知所得三个数都不一样,求含有1点的概率 思路:首先判断出所求的为条件概率,即在3个数都不一样的前提下,含有1点的概率,设事件表示“含有1点的概率”,事件为“掷出三个点数都不一样”,事件为“三个点数都不一样且有一个点数为1”,则有,,所以由条件概率公式可得: 答案: 7.甲乙两人进行跳绳比赛,规定:若甲赢一局,比赛结束,甲胜出;若乙赢两局,比赛结束,乙胜出。已知每一局甲,乙两人获胜的概率分别为,则甲胜出的概率为( ) A. B. C. D. 思路:考虑甲胜出的情况包含两种情况,一种是甲第一局获胜,一种是甲第一局输了,第二局获胜,设事件为“甲在第局获胜”,事件为“甲胜出”,则,依题意可得:,两场比赛相互独立,所以 从而 答案:A 8.如图,元件通过电流的概率均为,且各元件是否通过电流相互独立,则电流能在之间通过的概率是( ) A. B. C. D. 思路:先分析各元件的作用,若要在之间通过电流,则必须通过,且这一组与两条路至少通过一条。设为“通过”,则,设为“通过”,,那么“至少通过一条”的概率,从而之间通过电流的概率为 答案:B 9.假设每一架飞机的引擎在飞行中出现的故障率为,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机也可成功飞行;要使得4引擎飞机比2引擎飞机更安全,则的取值范围是( ) A. B. C. D. 思路:所谓“更安全”是指成功飞行的概率更高,所以只需计算两种引擎成功的概率即可,引擎正常运行的概率为,设事件为“4引擎飞机成功飞行”,事件为“个引擎正常运行”,可知引擎运行符合独立重复试验模型,所以,所以。设事件为“2引擎飞机成功飞行”,则,依题意:,即,进而解出 答案:B 10.从中,甲,乙两人各任取一数(不重复),已知甲取到的是5的倍数,则甲数大于乙数的概率是_______ 思路一:本题涉及条件概率的问题,设事件为“甲取到的数比乙大”,事件为“甲取到的数是5的倍数”,则所求概率为。若用公式求解,则需求出,事件即为“甲取到了5的倍数且甲数大于乙数”,由古典概型可计算出概率。甲能够取得数为,当甲取5时,乙有种取法,当甲取10时,乙有种取法,当甲取15时,乙有种取法,所以,因为,所以 思路二:本题处理条件概率时也可从实际意义出发,甲取5,10,15对乙的影响不同,所以分情况讨论。当甲取的是5时,甲能从5的倍数中取出5的概率是,此时乙从剩下14个数中可取的只有1,2,3,4,所以甲取出5且大于乙数的概率,同理,甲取的是10时,乙可取的由9个数,所以甲取出10且大于乙数概率为,甲取的是15时,乙可取14个数,所以甲取出15且大于乙数的概率为,所以甲取到的数是5的倍数后,甲数大于乙数的概率为 答案: 11.甲袋中有5只白球,7只红球;乙袋中由4只白球,2只红球,从两个袋子中任取一袋,然后从所取到的袋子中任取一球,则取到白球的概率是_______ 思路:本题取到白球需要两步:第一步先确定是甲袋还是乙袋,第二步再取球。所以本问题实质上为“取到某袋且取出白球的概率”,因为取袋在前,取球在后,所以取球阶段白球的概率受取袋的影响,为条件概率。设事件为“取出甲袋”,事件为“取出白球”,分两种情况进行讨论。若取出的是甲袋,则,依题意可得:,所以;若取出的是乙袋,则,依题意可得:,所以,综上所述,取到白球的概率 答案: 12.袋中共有7个大小相同的球,其中3个红球,2个白球,2个黑球。若从袋中任取三个球,则所取3个球中至少有两个红球的概率是( ) A. B. C. D. 思路:设为“袋中任取三球”,则,设事件为“至少两个红球”,所以,从而 答案:B 21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页) HYPERLINK "http://21世纪教育网(www.21cnjy.com) " 21世纪教育网(www.21cnjy.com)
展开
  • 资料类型: 试卷
  • 资料版本:通用
  • 适用地区:全国
  • 文件大小:1.47M
数学精优课

下载与使用帮助